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Abstract  

In technical textile engineering, macro-level phenomenological modeling effectively describes the 

material’s highly nonlinear behavior. However, existing material laws concentrate on the normal 

stiffness in the orthotropic yarns and simplify the shear effect because of the two orders of magnitude 

difference between shear and normal stiffness. This paper introduces an improved 

phenomenological model that includes nonlinear shear behavior, and it determines the material 

parameters with a previously applied1 data fitting method for exponential functions. The nonlinear 

shear behavior is valid for the elastic state, i.e., at the service level of the loads. Time-dependent, 

cyclic loading, or plastic behavior are not considered. 

Keywords: technical textiles, nonlinear constitutive law, uniaxial test, shear 

modulus 
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1. Introduction 

On the one hand, structural design requires precise and reliable material models. 

On the other hand, they should keep on being straightforward and effective, too, 

without any negligible or minor parameters. Woven technical textiles have 

significant geometric and material nonlinearities, which are still being treated 

differently from the micro- to the macro-levels. 

This paper intends to improve a method published before2, implementing a 

nonlinear elastic shear constitutive law for technical textiles. 

Lomov and his group3 created a complex 3D meso-level model of the yarns for 

simulating the macro-level behavior of the fabric. Haan and his group4 developed a 

homogenized elastic model where the yarns of a one-layer textile are modeled like 

bars. Ballhouse and his group5 took into consideration the time-dependent 

properties on the meso-level of the fabrics. Durville6 constructed a meso-level 

structure with 3D beam elements for complex macro-level numerical simulations.  

Still, these methods require detailed knowledge about the geometry at the meso-

level of the textile in question. Therefore, they can hardly serve as a method for 

engineering purposes as their generalization on the textile structure’s surface is 

challenging. 

The following phenomenological models in the literature succeeded in capturing 

the nonlinear behavior solely on the macro level. The dense net method7,8 uses two 

independent functions to be calibrated with the uniaxial measurements in the 

orthotropic directions; nonetheless, the model cannot handle the interaction 

phenomenon between the two yarn directions. The spline method9,10 defines the 

surface for the stress as a function of the two orthogonal elongations using power 

series to characterize the spline. The method’s main disadvantage is that it can lead 

to a divergent nonlinear analysis due to the behavior of power functions during 

extrapolation. 

Some other methods use adequate nonlinear functions11,12 to describe the textile 

behavior in the elastic range; however, they still consist of significant 

simplifications and computational uncertainties.  

Numerous researchers13–16 provide a continuum description for textile fabrics and 

characterize their behavior with some hyperelastic constitutive model. These 

models determine the stress tensor through the derivative of the strain energy 

density, which is formulated as a function of the strain invariants representative to 

the anisotropy of the deformed, initially orthotropic material. The strain invariants 

derived from structural tensors are identified with the help of the deformation 

modes of the fabric, i.e., they are based on physical observations13.  

Hegyi et al.2, carried out short-time uniaxial and biaxial tension tests on PTFE-

coated glass fibre woven textiles to describe macro-level coated textile behavior on 

the elastic range. In their new phenomenological model, they have eliminated the 

shortcomings described above. Their equations described the elongations of the 

orthogonal yarns with two exponential functions and a power function that 
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characterize the interaction between the yarns. In that model, the shear stiffness was 

simplified to a linear function. 

Even though the presented macro and meso-level models capture the fabric 

behavior in detail, they are far too complicated or impractical for engineering usage. 

Some of them have too high computational and input parameter needs. Others 

neglect the interaction of the two orthotropic yarns. Finally, some methods can 

become numerically unstable at a nonlinear analysis of the membrane. 

The present paper aims to capture the shear effect and update the existing 

phenomenological model with the shear stiffness for proper engineering usage. For 

the result, uniaxial tensile tests were carried out on PVC coated polyester-fiber 

textiles in different yarn-load directions. 

2. The existing orthotropic elastic phenomenological 

material law 

This Section briefly introduces the existing orthotropic elastic phenomenological 

material law developed by Hegyi et al.2. It is well known that the nonlinearity of 

the stress-strain function of the technical textiles comes from the straightening of 

the mostly linear elastic fibres during the loading. To capture this macroscopic 

behavior, the authors carried out three types of experimental series: uniaxial tensile 

tests in the two orthogonal yarn directions, and a biaxial tensile test on a crossed 

shape specimen, with the help of a special pulley system17,18. Engineering strains 

were measured on a 30 by 30 mm area at the center of the samples with a video 

extensometer. The used material was a PTFE coated woven glass fibre. In the 

present paper, PVC coated woven polyester fibre material is used. Table 1. contains 

the main parameters of the two materials for comparison.  

Table 1. Comparison of the investigated materials 

Material 
Verseidang Duraskin B 

180892 

Sauleda Monza 

Polyester AT 1100 

Yarns Glass fibre Polyester 

Weave type Simple plain weave Simple plain weave 

Coating PTFE PVC 

Average thickness [mm] 0.67 0.48 

Surface density [
𝑔

𝑚𝑚2
] 1150 580 

2.1. Uniaxial behavior with the interaction of the yarns 

The following two functions describe the normal stress-strain curve: 

𝜎𝑤 = 𝑎1𝜀𝑤(1 − 𝑒−𝑎3𝜀𝑤
2
) + 𝑎2𝜀𝑤(𝑒−𝑎4𝜀𝑤

2
) + 𝑐1𝜀𝑓(𝜀𝑤

2 𝜀𝑓
2)

𝑐2
  (1) 

𝜎𝑓 = 𝑏1𝜀𝑓 (1 − 𝑒−𝑏3𝜀𝑓
2

) + 𝑏2𝜀𝑓 (𝑒−𝑏4𝜀𝑓
2

) + 𝑐1𝜀𝑤(𝜀𝑤
2 𝜀𝑓

2)
𝑐2

  (2) 
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where 𝜎𝑤 and 𝜎𝑓 [𝑁/𝑚𝑚2] are the engineering stress in the warp and weft 

direction, and 𝜀𝑤 and 𝜀𝑓 [%] denote the engineering strain in the warp and weft 

directions, respectively. The engineering stress measures the force applied to the 

material on the reference (stress free) area. For the engineering strain, the change 

in the length of a segment is divided by the reference length of the segment. Using 

the geometry of the reference state is utilized in the experimental tests (in eqs. 9 and 

10). In the formula of the engineering stress above, 𝑎1 − 𝑎4 ; 𝑏1 − 𝑏4 and 𝑐1 − 𝑐2 

are constant material parameters. The best-fit parameters to the PTFE and PVC test 

can be found in Table 2. a1, a2, b1, b2, and c1 determine the asymptote of the 

exponential functions, so by neglecting the expressions in the brackets, they 

represent the linear approximation of the stress-strain relation. 

Table 2. Best-fit parameter values of the two tested materials 

Materials Linear parameters Nonlinear parameters 
Interaction 

parameters 

𝑎1 𝑎2 𝑏1 𝑏2 𝑎3 𝑎4 𝑏3 𝑏4 𝑐1 𝑐2 

Verseidang 

Duraskin B 

180892 

7.11 6.97 1.51 3.07 0.83 1.94 0.27 0.73 0.54 0.34 

Sauleda Monza 

Polyester AT 

1100 

6.00 11.00 1.86 1.50 0.082 0.101 0.12 0.008 0.005 0.77 

The first two exponential components are derived from the elongation of yarns 

during the tension. The third term shows the interaction between the yarns based on 

the phenomenon that every elastic constitutive law should satisfy the energy 

conservation criteria: 

𝜕𝜎𝑤

𝜕𝜀𝑓
=

𝜕𝜎𝑓

𝜕𝜀𝑤
= 2𝑐1𝑐2(𝜀𝑤𝜀𝑓)

2𝑐2 + 𝑐1(𝜀𝑤𝜀𝑓)
2𝑐2  (3) 

Engineering stress and Biot strains were used for acquiring an accurate result during 

the parameter identification. Figures 1 to 4 show the normal stress-strain diagrams 

in the weft and warp directions, respectively, of the parameter fitting for the PVC 

coated polyester fibre material with the existing model. The fitting procedure was 

running for the three sets of the measurements (warp, weft, and biaxial) 

simultaneously so that the represented functions cover the bi-axial behavior of the 

material. 
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Figure 1. The uniaxial projection of the result of the parameter identification for the warp 

direction for PVC coated textile. 

 

Figure 2. The uniaxial projection of the result of the parameter identification for the weft direction 

for PVC coated textile. 
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Figure 3. The representation of the result of the parameter identification for the warp stress 

direction by the function of the bi-axial strains. 

 

Figure 4. The representation of the result of the parameter identification for the weft stress 

direction by the function of the bi-axial strains. 

The method of parameter identification is given in paper2 in detail. For the 

parameters in the exponential terms, the variable projection method1,19, 

implemented in MATLAB, seemed to be the best choice. For the parameters in the 

interaction term, a least square minimization proved to be appropriate. The 
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determination of the coefficient for the fit was 𝑅2 = 0.980 . Table 3. shows the 

accepted range of the parameter identification for the PVC material based on the 

realistic expectation based on datasheet of manufacturers and the analysis of the 

exponential functions with the acquired data.  

Table 3. The plausible ranges of the model parameters: 

 min max 

Linear parameters 

𝑎1 5 10 

𝑎2 10 15 

𝑏1, 𝑏2 1.5 2.5 

Nonlinear parameters 

𝑎3, 𝑎4  0 0.2 

𝑏3, 𝑏4 0 1 

Interaction parameter 

𝑐1 -1 5 

𝑐2 0 1 

 

For the Total Lagrange Method (TLM), the secant of the stress-strain curve should 

be used during the nonlinear structural analysis. The stiffness matrix is diagonal 

because the transversal deformation is considered in the calculation of the secants. 

It reads  

𝐷 = [

𝜎𝑤

𝜀𝑤
0 0

0
𝜎𝑓

𝜀𝑓
0

0 0 𝐺

].   (4) 

For the case of the Updated Lagrange Method (ULM) the tangential stiffness matrix 

is suitable, i.e., 

𝐷 =

[
 
 
 
 
𝜕𝜎𝑤

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑤
0

𝜕𝜎𝑓

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑓
0

0 0 𝐺]
 
 
 
 

.   (5) 

To obtain a proper model of the shear behavior, additional experiments are needed. 

This paper is meant to make this development. 

3. Model development 

To introduce a proper shear function, the shear behavior of technical textiles is 

studied. Note that there is no standardized experimental method to capture the shear 

deformations20. One may use frame devices for producing pure shear in a technical 

textile sample. Some tests use the bias test method (uniaxial test), where subtle 

mechanical calculations are required. During a test, a locking effect often occurs 

between the yarns over a certain level of the deformation, affecting the further 

relative displacement of the orthogonal yarns, thus the shear behavior in the 

beginning. For further analysis in the present phenomenological model, the locking 
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effect and the flexural stiffness of the yarns are not separated from the shear strains. 

Furthermore, the analysis is limited to the region where 4-5% of the normal strain 

diagram’s initial slope occurs. Simple uniaxial tension tests were carried out as 

before, but with a varied orientation of the yarns to cause normalized shear effect 

in the center of the test specimen21. 

3.1. Experimental arrangements 

To express the shear function, both the shear stress and the shear deformation 

should be measured. Seven uniaxial test series were carried out, where each series 

consisted of three specimens. In each series, the yarns had an angle (φ) to the tensile 

force’s direction between 0-90° in 15° steps. (Figure 5). 

 

Figure 5. The experimental arrangement of the test strips 
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Figure 6. A photo about the test strip 𝜑 = 45° 

The material of all the specimens was PVC coated polyester fibre (Tab. 2). Each 

test strip was cut with a width of 50 mm, and the grip distance was 200 mm. The 

displacement tests were carried out with a tensile test machine Zwick Z020. The 

speed of elongation was 0.20 mm/s. Each specimen was prestressed between 20-40 

N to eliminate the waving at the edges that resulted from the storage. The test 

terminated at the failure of the specimen. To record the strain data, a Messphysik 

ME-46 full image video-extensometer was used in each series. The recordings were 

carried out with a set of stereo cameras due to the waving occurrence. The recorded 

data was processed by the software Mercury RT® (version 2.7). A line probe was 

defined by two end points (control points) in the yarn direction inside a 10 by 10 

mm square on the middle of the specimen. During the test, the average elongation 

of the line probe and its average angle change to the horizontal axis of the original 

configuration was measured. The data was calculated by the following correlation 

settings: 0.2 px correlation interval, 41x41 px template height width 4 control 

points, fast speed, and high correlation quality (Figures 6-8). Although the Mercury 

RT® can express deformation tensors, only with one camera measurement, not with 

a stereo camera. As the surface of the specimen slightly wrinkles during the test, 

the measurement cannot be accurate with a single camera, so the line probe method 

should be chosen as described above. 
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Figure 7. The test configuration with equipment 

 

Figure 8. The defined line probe and correlation interval area around its control points. 

3.2. Stress-strain calculation 

During the measurements, the machine’s tension force and strains of the specimen 

were registered in the loading plane. The fabric material was considered a 

continuum with sole in-plane deformation modes, namely in-plane elongation and 

in-plane shear13. In this plane, two orthogonal frames were defined. In the “xy” 

system, the y-axis was parallel to the axis of the loading direction, and the x-axis 

was orthogonal (Figure 5). However, for supplementing the material law, the stress-

strain diagram should be expressed in the frame of the textile yarns. The plane 

determined by the warp and weft yarns will be called the “wf” system for further 
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analysis. The angle between the y-axis of the “xy” system and the weft yarn of the 

“wf” system is denoted to φ. 

𝐞𝑤0 and 𝐞𝑓0 are the initial fiber direction unit vectors for the warp and weft 

directions, respectively. They are represented in the “wf” coordinate system. The 

deformation gradient tensor reads:  

𝐅 =  ∂𝐱 ∂𝐱𝒋,𝟎⁄ ⊗ 𝐢𝒋, (6) 

where 𝐱𝟎 and x are the coordinates of the initial and actual state, respectively. Here 

i is the unit basis vector in the initial frame. Each quantity is represented in the “xy” 

coordinate system. The following tensors are used in the sequel to obtain the strain 

rates for further investigations: 

𝐂 = 𝐅T𝐅, (7) 

𝐄 =
1

2
(𝐂 − 𝐈), (8) 

where C is the right Cauchy-Green deformation tensor, E is the Green-Lagrangian 

strain tensor, and I is the unit tensor.  

The engineering strain tensor components in the yarn directions (warp and weft) 

and the angle change can be expressed as: 

𝜀𝑤𝑤 = √𝐞w0 𝐂 𝐞w0 − 1, (9) 

𝜀𝑓𝑓 = √𝐞f0 𝐂 𝐞f0 − 1, (10) 

𝛾𝑤𝑓 = sin−1 2𝐞w0𝐄𝐞f0

(1+𝜀𝑤𝑤)(1+𝜀𝑓𝑓)
. (11) 

 
Figure 9. The measured strains for the determination of the shear modulus during the test. 



13 
 

The determination of the components of the strain tensors was simple due to the 

application of the video extension meter. The normal strains (𝜀𝑤𝑤 , 𝜀𝑓𝑓) in the 

directions of yarns are acquired from the instrument directly. The change of line 

element length was accepted as a strain. The angle change of the line elements 

parallel to the warp and weft yarns was monitored to the direction x of the original 

configuration (∆𝜑𝑤 , ∆𝜑𝑓 ) (Fig. 9). The engineering shear strain is calculated from 

the following equation: 

𝛾𝑤𝑓 = ∆𝜑𝑤 + ∆𝜑𝑓.  (12) 

The engineering strain tensor of the surface in the “wf” system is obtained via: 

𝛆 = [
𝜀𝑤𝑤

1

2
𝛾𝑤𝑓

1

2
𝛾𝑤𝑓 𝜀𝑓𝑓

]. (13) 

During the tests, the tension force of the machine was measured, from which a 

normalized tensile stress 𝜎𝑦𝑦 can be expressed using the geometry of the original 

cross-section. The relatively small thickness of the material results in a 2D plane-

stress condition, where the out-of-plane normal stress and shear stresses vanish. 

Furthermore, the stress in the orthogonal x-direction is always zero in the uniaxial 

tests (𝜎𝑥𝑥 = 0) as the shear stress vanishes, too (𝜏𝑥𝑦 = 0). The stress tensor is a 2nd 

rank tensor in both coordinate systems (equations 14, 17), which equals the Biot 

stress in the “xy” (reference coordinate) system:  

𝐓Bxy = [
𝜎𝑥𝑥 𝜏𝑥𝑦

𝜏𝑥𝑦 𝜎𝑦𝑦
] = [

0 0
0 𝜎𝑦𝑦

]. (14) 

To obtain the stress tensor in the “wf” system from the stresses in the“xy” system, 

the Q transformation matrix is introduced: 

𝐐 = [
cos𝜑 sin𝜑
−sin𝜑 cos𝜑

] , (15) 

where 𝜑 is the angle of rotation between the “x” and the “w” or the “y” and “f” 

directions. Hence,  

𝐓Bwf = 𝐐 ∙ 𝐓Bxy ∙ 𝐐T,  (16) 

𝐓Bwf = [
𝜎𝑤𝑤 𝜏𝑤𝑓

𝜏𝑤𝑓 𝜎𝑓𝑓
] , (17) 

where 𝜎𝑤𝑤 and 𝜎𝑓𝑓 are the engineering normal stress components in the warp and 

weft yarns, respectively and 𝜏𝑤𝑓 are the engineering shear stress components. 

4. The new shear model 

4.1. Uniaxial shear behavior in the warp-weft plane 

From the stress-strain transformations, the elongation and the angle of the yarns 

were not constant, so shear occurs in the material. In all measurement where 0° <

𝜑 < 90° the engineering stress where expressed by the original area of the section 
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of the specimen. Figures 10-11 shows the results of the shear stress-strain diagram 

for each tested angle.  

 

Figure 10. The projection of one measured shear stress-strain curves from each load directions 

projected to the  𝛾𝑤𝑓 − 𝜏𝑥𝑦 coordinate system. 

 

Figure 11. The measured stress-strain curves for shear with respect to the angle of the load (φ) in 

the  𝛾𝑤𝑓 − 𝜏𝑥𝑦 −  𝜑 coordinate system. 

Based on the shear stress-strain curves, the orthotropic material behavior is the right 

assumption for the material. The curves do not vary significantly with respect to the 

tension angle φ, which means that the shear deformation is uncoupled from the yarn 

elongations. Secondly, the characteristic of the measured values shows a typical 

feature for technical textiles as it was experienced before2, where the stress-strain 

relationship can be described with the two exponential terms effectively in the range 
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of plausible normal strain from an engineering point of view. The shear stress-strain 

behavior is given with the same idea: 

𝜏𝑤𝑓 = 𝑑1𝛾𝑤𝑓 (1 − 𝑒−𝑑3𝛾𝑤𝑓
2

) + 𝑑2𝛾𝑤𝑓 (𝑒−𝑑4𝛾𝑤𝑓
2

) , (18) 

where 𝜏𝑤𝑓  [
𝑁

𝑚𝑚2
] is the shear stress and 𝛾𝑤𝑓 [rad] is the shear strain between the 

two yarns. 𝑑1;  𝑑2;  𝑑3;  𝑑4 are material parameters, with 𝑑1;  𝑑2 in [
𝑁

𝑚𝑚2
] and 

𝑑3;  𝑑4 without dimension.  

It is important to note that this paper does not systematically examine the tensile 

and shear strength of the material. However, all tests were terminated at failure of 

the material, which occurred close to the upper clamping of the test specimen. The 

higher the difference from the load angle was, the earlier the crack evolved (Figures 

11). For further analysis and parameter identification, the interval 𝛾𝑤𝑓 = 0 −

0.25  rad was taken into consideration (Figures 12). 

4.2. Parameter identification 

The implemented MATLAB method in paper 2 is applied. The variable projection 

method1 is a perfect tool to obtain the four parameters of the exponential functions. 

In the least square minimization, the parameters can suffer a significant shift in the 

parameter space due to the exponentials' presence in the objective function. 

However, the variable projection method determines all the linear and nonlinear 

parameters of the model's exponentials reasonably. The two-input functions for our 

program consisted of equation (18) of the parameter fitting about the shear the 

second one consisted the measured stress values (𝑡𝑤𝑓) from the experiments. The 

method found the minimal deviation between the two sets of points, so the 

parameters for our model. 

 

Figure 12. The measured and fitted 𝜏𝑤𝑓  shear stress values in function of 𝛾𝑤𝑓 and φ, 

(𝑅2 = 0.977 ) 



16 
 

The best-fit parameters for the material measured in the shear experiments are: 

𝑑1 = 175 ; 𝑑2 = 22.5 ; 𝑑3 = 1.91 ; 𝑑4 = 21.82 at the value for the coefficient of 

determination of the fitness is 0.977. Figure 12. represent the stress-strain curve 

results of the parameter fit for the uniaxial measurements. Table 4. shows the 

accepted range for the fitting based on the realistic expectation and the exponential 

function analysis. 

Table 4. Range of plausible parameters of the model: 

 min max 

Linear parameter: 𝑑1 150 200 

Linear parameter: 𝑑3 5 40 

Nonlinear parameter: 𝑑2 1 3 

Nonlinear parameter: 𝑑4 0 40 

 

5. Discussion and verification 

5.1. Stability of the stiffness matrix 

Further essential criteria for a stable constitutive material law is to have a positive 

definite stiffness matrix. 

In the case of the supplemented symmetric stiffness matric in TLM is: 

𝐷 = [
D𝑤𝑤 0 0
0 D𝑓𝑓 0

0 0 𝐺

] =

[
 
 
 
 
𝜎𝑤

𝜀𝑤
0 0

0
𝜎𝑓

𝜀𝑓
0

0 0
𝜏𝑤𝑓

𝛾𝑤𝑓]
 
 
 
 

>0, (19) 

Here, it is necessary to verify only that all the main diagonal entries are positive. 

The opposite is possible only if the divisor and the dividend in one entry has 

different signs. As it is physically impossible, e.g., positive stress (tension) will not 

result in negative strains (compression) in any direction. So, the inequality in eq. 

(19) holds. 

In the case of the supplemented symmetric stiffness matric in the ULM reads: 

𝐷 = [

D𝑤𝑤 D𝑤𝑓 0

D𝑤𝑓 D𝑓𝑓 0

0 0 𝐺

] =

[
 
 
 
 
 
𝜕𝜎𝑤

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑤
0

𝜕𝜎𝑓

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑓
0

0 0
𝜕𝜏𝑤𝑓

𝜕𝛾𝑤𝑓]
 
 
 
 
 

>0,    (20) 

where D is the stiffness matrix of the material in one step of an Updated Lagrangian 

type analysis (Eq. 5), D𝑤𝑤, D𝑓𝑓 , D𝑤𝑓 and G are the elements of the stiffness matrix 

for normal stress, transversal effect, and shear, respectively. 𝐺 =
𝜕𝜏𝑤𝑓

𝜕𝛾𝑤𝑓
 is positive in 

the determined range, see Figure 13.  
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Figure 13. The value of the shear modulus in the examined range of shear strains. 

When G, Dww and Dff are positive according to Eq. 1, 2 and 18 and Tab. 3, it is 

necessary to verify only that the 𝐷3,3 minor of the D matrix is positive. 

𝐷3,3 =
𝜕𝜎𝑤

𝜕𝜀𝑤

𝜕𝜎𝑓

𝜕𝜀𝑓
− (

𝜕𝜎𝑓

𝜕𝜀𝑤
)
2

  (21) 

With the identified parameters, the function 𝐷3,3 is a two-variable function of the 

strains. The surface is above 0 for reasonable stains (the strains are represented in 

percentage, and the strain is generally under 4-5% even in the ultimate load level).  

 

Figure 14. The surface of the 𝐷3,3 function over the space spanned by the strains. 
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Figure 15. The level set of the 𝐷3,3
′ function at z=0. 

At larger strains and in negative strains 𝐷3,3 is negative. Figure 15. depicts the level-

set of 𝐷3,3 = 0 where 𝐷3,3 is positive in the shaded region. To ensure stability in 

the numerical analysis, the determinant should be verified, but as it is clear from 

Figure 14., there is no difficulty up to 5-8% strain levels. Figure 15. makes it clear 

that we are close to the border of the positive-definite regime along with the 

negative range of the axes and over 7% of a biaxial elongation. Exceeding the 

boundary can produce instability in the classical finite element method because the 

inverse of the stiffness matrix is needed. For extremely large strains, the dynamic 

relaxation method lends a proper strategy17,23. As we demonstrated, for moderate 

strains, the new constitutive model is numerically stable. 

5.2. Material objectivity 

The material objectivity is a key question: the constitutive laws must be 

independent of the applied frame. It is essential if large strains and/or deformations 

are considered.  

The presented constitutive law uses the strain measured the change between the 

initial state and the actual state. The base of the difference is the initial state, so it 

is described in the initial state, in the so-called Lagrangian form. The stress is 

measured by the average stress calculated from the force introduced by the test 

machine. The force is distributed on the initial width of the specimen. This is the 

so-called engineering stress. The stress state initialized in the measurement in the 

Sec. 3.2. is the same engineering stress which is sometime called the Biot stress 

tensor in tensor analysis. To transform the Biot stress from the initial state to the 

actual state, the following equation can be used17,24: 

𝐓 = 𝐅𝐓B𝐑T 1

|𝐅|
 , (22) 
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where T is the Cauchy-stress tensor (the stress tensor of the current state), F is the 

deformation gradient, R is the rotation tensor and  𝐓B is the stress tensor in the 

initial state. The Biot stress tensor is based on the right stretch tensor: 

𝐔 = √𝐂 .  (23) 

The change of the angle is expressed by the Green-Lagrange strain (Eq. 11): 

𝐄 =
1

2
(𝐅𝑇𝐅 − 𝐈). (24) 

All the tensors used to express the Biot-stress, and the transformation in Eq. 22 

are objective, i.e. the constitutive law is objective by the usage of Eq. 22. 

6. Conclusion 

An updated elastic constitutive material model is introduced for predicting the 

stresses of technical textiles. This material law, as an extension of the classical 

elastic orthotropic material law, takes into consideration of the nonlinear behavior 

of the yarns and the geometric nonlinearity of the yarns inside the fabric. The 

nonlinear behavior of the shear stiffness is in focus, as this property of the technical 

textiles was neglected in the past. 

A data acquiring strategy is presented, employing uniaxial tension tests. It is shown 

that the shear stress curve can be described with exponential functions and the shear 

stress is dominantly independent of the angle between the load and the yarn.  

The new phenomenological constitutive law represents the nonlinearity of both the 

normal- and shear stiffness. The new constitutive law fulfills the requirements for 

a real material: existence of a strain energy function, positive definiteness at 

reasonable strain levels and the material objectivity criterium. 
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